Evidentiary Considerations for Integration of Biomarkers in Drug Development

Statistical Considerations for Clinical Safety Biomarkers

Robin Mogg

<u>rmogg@its.jnj.com</u>

Scientific Director, Statistical Modeling Janssen Research and Development

August 21, 2015

Potential biomarker panel for drug-induced pancreatic injury: Hypothetical example COU 1

Potential biomarkers:	Context of Use (COU 1):
1. MiR-216a	Claim: Qualified biomarkers to be used together
2. MiR-375	with conventional biomarkers, in early clinical drug development (in HV) to support conclusions as
3. Protein RA1609	to whether a drug is likely or unlikely to have
4. Protein RT2864	caused a mild injury response in the pancreas at the tested dose and duration.
5. Trypsinogen-1	Research use: To make decisions in real time on
6. Trypsinogen-2	individual or dose cohort based on changes in
7. Trypsinogen-3	biomarker concentrations (from baseline) , complementing the use of standard biomarkers

<u>Supportive studies</u>: Two prospective case/control studies in patients using medications that have potential to cause pancreatic injury:

- 1. Azathioprine in Crohn's disease patients
- 2. Mesalazine in ulcerative colitis patients with normal pancreas function
- Show greater diagnostic predictivity compared to amylase and lipase with a formal adjudication procedure and a predefined statistical evaluation

Hypothetical example for drug-induced pancreatic injury COU 1 (cont.)

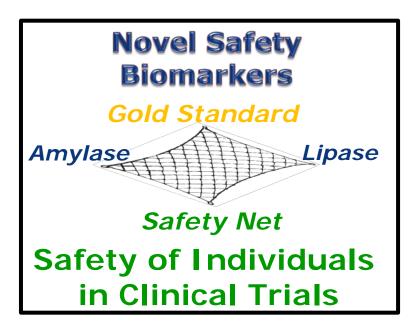
- Learn and confirm approach: ample learning completed at this stage
 - COU 1 clearly defined (support conclusions related to pancreatic injury response)
 - Objectives of confirmatory studies defined (greater diagnostic predictivity)
 - Biomarker panel chosen (though not clear from COU 1 how panel will be used, e.g., individual biomarkers or combination)
 - Measure of biomarker identified (e.g., dynamic change from baseline instead of single timepoint concentration)
- <u>Predefined statistical evaluation</u> of two prospective studies
 - Study results must support defined COU 1

Predefined statistical evaluation: study results must support defined COU 1

- <u>Clear hypotheses regarding how biomarkers are to be</u> considered for use (relevant null and alternative):
 - E.g., using biomarkers + conventional markers relative to conventional markers alone will improve the sensitivity (or specificity) to identify patients treated (not treated) with medications known to potentially cause pancreatic injury
- Individual analysis to support each hypothesis
 - Lower bound 95% CI on difference > 0 (is 0 good enough?)
- But, <u>how to identify</u> patients as having potential injury response?
 - Signal in any 1 biomarker, signal in 2 of 3, signal in ALL, signal in a measure that combines and reduces 3 biomarker measures into 1 composite measure?
 - And, what is a "signal"? Predictive of injury? Predictive of exposure? Outside variation of HV? Is there a pseudo or true gold standard?

True gold standard vs "pseudo-gold standard"

- Gold standard (e.g., histopathology)
 - May be unavailable, too invasive, too expensive
 - If exists, new biomarker performance can be assessed through standard methods (e.g., ROC analysis) to show "comparability" to gold standard
- "Pseudo-gold standard" often inadequate (e.g., amylase/lipase in pancreatic injury lack specificity)
 - Comparing new biomarker using pseudo-gold standard as reference is unlikely to show improvement
 - Using <u>treatment (exposure) as a reference</u> possible to show improvement


		Conventional markers only			
		Assessed as exposed	Assessed as NOT exposed	Total	
Biomarkers+	Assessed as exposed	А	В	A + B	
Conventional markers	Assessed as NOT exposed	С	D	C + D	
	Total	A + C	B + D	# controls	

Jansse

Specificity of conventional markers can be compared to that of biomarkers + conventional markers to show improvement (e.g., 95% CI LB > 0)

5

What is the risk if the biomarker(s) lack predictive accuracy: Type I vs Type II error

Type I error: qualify biomarkers that do not predict toxicity

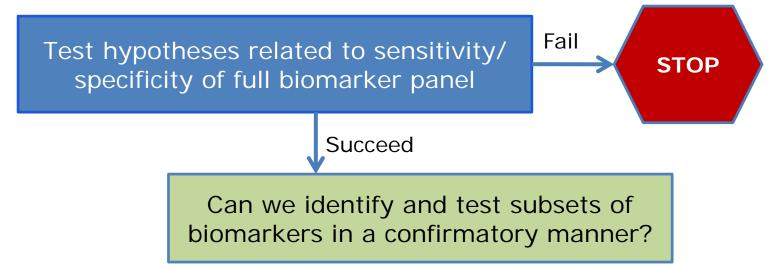
Type II error: reject biomarkers that do predict toxicity

Which is worse? Depends on intended use and current standard practice

- Intended use: to expand testing new drug when conventional biomarkers alone are considered inadequate (i.e., too risky)
 ensure biomarkers predict outcome (Type I error)
- Intended use: to conclude new drug is unsafe if biomarkers or conventional markers indicate it unsafe when conventional biomarkers alone are considered adequate
 ensure identify potential injury (Type II error)

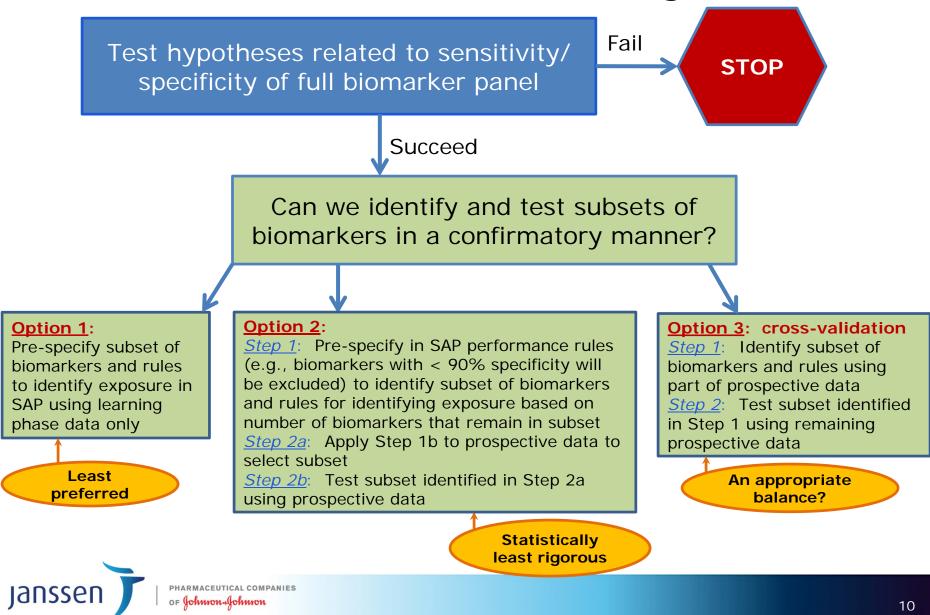
Predefined statistical evaluation: agreement of analytical plan

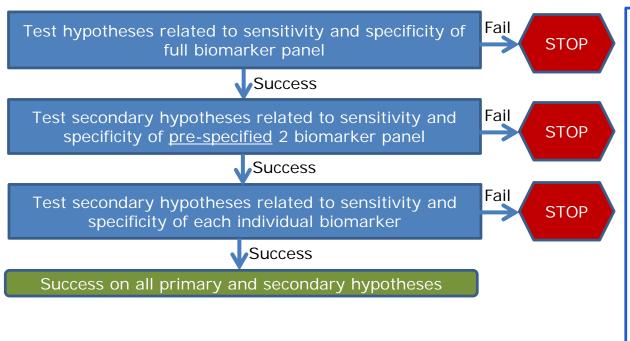
- Pre-defined statistical analysis plan to address:
 - How to combine data from multiple studies (pooling, meta-analysis)
 - How to handle missing data (ignore/remove, LOCF, imputation)
 - What are important **sensitivity analyses**?


Additional considerations: adaptive strategy to continue learning while confirming?

Interim Analysis	Timing of Interim Analysis	Purpose of Interim Analysis	Example Rule
1 (IA 1)	After completion of ~ first 25% of all study data (first ~25% from each prospective studies)	 Assess initial performance to with respect to sensitivity/ specificity hypotheses Potential to modify biomarker rules to identify "signal" Potential to increase sample size 	 If observed specificity < 80%, modify biomarker rules. Exclude data from IA 1 in final analysis, increase overall sample size so final analysis is fully powered If observe specificity ≥ 80% continue to final analysis
2 (perform only if modify rules at IA 1)	After completion of ~ second 25% of all study data (second ~25% from each prospective studies)	 Assess initial performance of modified rules with respect to sensitivity/specificity hypotheses Potential to stop prospective studies for futility 	 If observed specificity < 80%, stop studies for futility If observe specificity ≥ 80% continue to final analysis

What is impact on Type I/Type II error? Simulations are useful


Additional considerations: can we explore biomarker subsets while confirming?



PHARMACEUTICAL COMPANIES

Additional considerations: can we explore biomarker subsets while confirming?

Additional considerations: Option 1 to explore biomarker subsets

May be difficult to pre-specify and identify subsets when the number of biomarkers in the panel is > 3

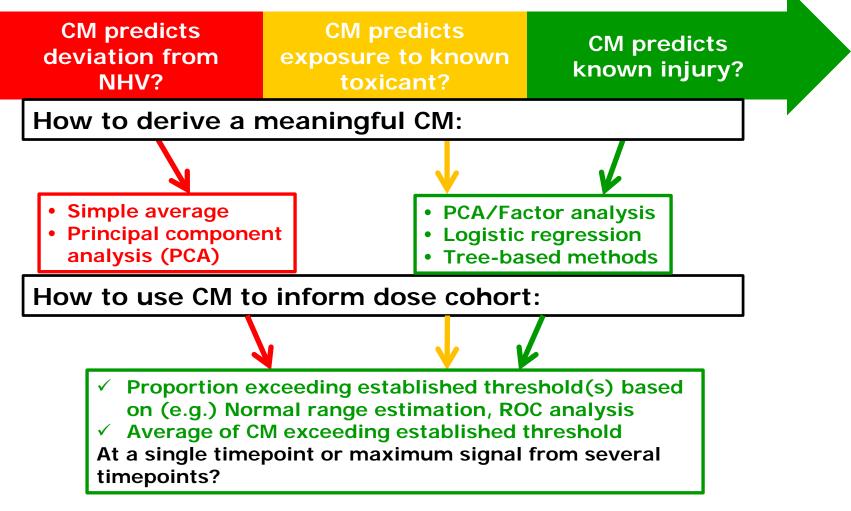
A hierarchical testing strategy was proposed to protect the overall Type I error at $\leq 2.5\%$ (1-sided)

- Both sensitivity and specificity tested at each level, success on both must be met to proceed to the next level
- Within final level of the hierarchy, the sensitivity and specificity of the 3 individual BmXs can be tested using appropriate multiplicity adjustment (e.g., Hochberg)

Potential biomarker panel for drug-induced pancreatic injury: Hypothetical example COU 2

Potential biomarkers:	Context of Use (COU 2):
1. Protein RA1609	<u>Claim</u> : A composite measure (CM) of the qualified biomarkers to be used together with conventional
2. Protein RT2864	biomarkers, in normal healthy volunteer trials
3. Trypsinogen-3	supporting early clinical drug development
	Research use: to make decisions in real time on
	dose cohort using group average of CM, based on
	changes in biomarker concentrations (from

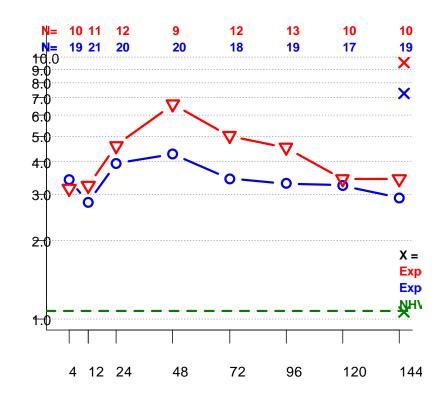
biomarkers <u>Supportive Data</u>: Learning phase data to support objectives for COU 1 One study in healthy subjects at 2 visits, and one study in patients with


baseline), complementing the use of standard

known pancreatic injury

✓ Characterize expected variability of CM in NHV and show association of CM with known injury

Hypothetical example for drug-induced pancreatic injury COU 2 (cont.)



• What are the limitations of the learning data?

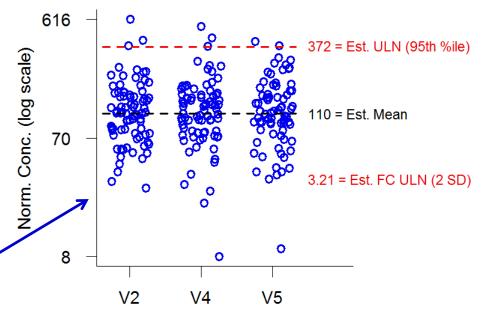
PHARMACEUTICAL COMPANIES

Some potential limitations of learning data

Hour post-baseline

Individual Patient CM = GM of 3 BmX FC from BL GM CM = GM of Individual Patient CMs

- May only confidently use to predict deviation from NHV
- Multiple timepoints for exposed patients, limited timepoints for NHV
- Signal much larger using maximum across all timepoints
- Association ≠ Causation
- How can we derive thresholds?
 - Bootstrap, but only for single timepoint
 - Modeling and simulation, with assumptions

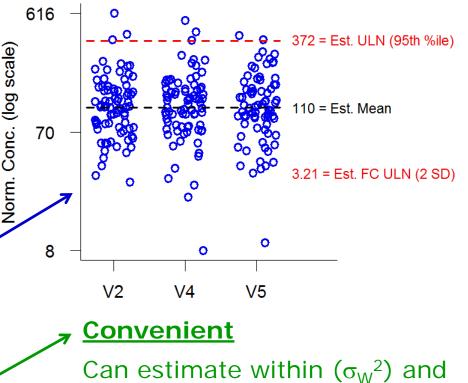


Geometric Mean

PHARMACEUTICAL COMPANIE

Other relevant statistical considerations before COU 1/COU 2

- What is the right biomarker measure?
 - Raw concentrations, normalized concentrations, change from baseline (absolute or fold-change)
- How to estimate normal ranges (i.e., in NHV)?
 - "robust" (Horne and Pesce) method, non-parametric bootstrap, assumptions of normality (can transform)


Other relevant statistical considerations before COU 1/COU 2

- What is the right biomarker measure?
 - Raw concentrations, normalized concentrations, change from baseline (absolute or fold-change)
- How to estimate normal ranges (i.e., in NHV)?
 - "robust" (Horne and Pesce) method, non-parametric bootstrap, assumptions of normality (can transform)

Potential effects of covariates

PHARMACEUTICAL COMPANIES

Can estimate within (σ_W^2) and between (σ_B^2) subject variability

If $\sigma_W^2 << \sigma_B^2 \Leftrightarrow$ change

If $\sigma_B^2 >> \sigma_W^2 \Leftrightarrow absolute$ measure

Other relevant statistical considerations before COU 1/COU 2 (cont.)

- Selection of biomarkers
 - <u>Many statistical methods</u>: regression (traditional, ridge, LASSO), classification/ROC, tree-based methods
 - Multiplicity concerns can be mitigated using false discovery rate methods and cross-validation
 - Selecting a few among potentially many typically goes beyond statistics

Biomarker	Performance in Learning Studies	Biological Interpretation	Assay Availability and Confidence – e.g., LLOQ/ Analyte Stablility/ No Special Buffer needs	Translatability	Cost
1					
2					

janssen

Concluding remarks

- Defining universal evidentiary standards for safety biomarker qualification is difficult
 - Significant diversity in potential context of use
- Appropriate evidentiary standards rely on core statistical principles
 - Some may mimic traditional evidentiary standards associated with drug development (Clear hypotheses, analyses, multiplicity, missing data, ...)
 - Some may not (Settings in safety qualification where Type II error may be important, integrating more than one study for final analysis, ...)
- Key beyond statistics: cooperative efforts (consortium), regulatory interactions, patience

Acknowledgements

- Xavier Benain
- Aloka Chakravarty
- Irene Nunes
- John-Michael Sauer
- Matthew Schipper
- Frank Sistare
- PSTC/FNIH Biomarkers Consortium Kidney Safety Project Team Members

PHARMACEUTICAL COMPANIES of Johnson Johnson