

Keynote 3: Integration of Biomarkers and Quantitative Modeling - Plasma

October 27, 2020

Henrik Zetterberg, Professor University of Gothenburg & University College London

Alzheimer's & Dementia 14 (2018) 535-562

Alzheimer's

Dementia

2018 National Institute on Aging—Alzheimer's Association (NIA-AA) Research Framework

NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease

Clifford R. Jack, Jr.,^{a,*}, David A. Bennett^b, Kaj Blennow^c, Maria C. Carrillo^d, Billy Dunn^e, Samantha Budd Haeberlein^f, David M. Holtzman^g, William Jagust^h, Frank Jessenⁱ, Jason Karlawish^j, Enchi Liu^k, Jose Luis Molinuevo^l, Thomas Montine^m, Creighton Phelpsⁿ, Katherine P. Rankin^o, Christopher C. Rowe^p, Philip Scheltens^q, Eric Siemers^r, Heather M. Snyder^d, Reisa Sperling^s

Biomarkers for A/T/N

- Amyloid = CSF $A\beta 42/A\beta 40$ ratio and amyloid PET
- Tau = Tau PET (CSF P-tau as a predictive marker?)
- Neurodegeneration = CSF neurofilament light, MRI, FDG-PET

Please email questions to ykarten@c-path.org

Can this be measured in blood?

Historically, plasma $A\beta$ could show any result

Study	Effect Size (95 % CI)						AD	CTRL	Effect Size	Lower CI	Upper CI	% Weight
	0.2	0.4	0.6	1 2		5						
Mayeux, 1999				•			64	105	1.600	1.553	1.648	5.19
Arvanitakis, 2002			-				220	59	1.085	0.800	1.471	2.63
Fukumoto, 2003							146	92	1.057	0.911	1.227	4.23
Mayeux, 2003							79	365	1.168	1.061	1.287	4.76
Fagan, 2007			-				33	65	1.139	0.779	1.665	2.06
Fagan, 2007				_ 			16	65	1.000	0.580	1.723	1.26
Giedraitis, 2007							39	18	0.850	0.479	1.509	1.16
Pesaresi, 2007			- •	-			192	126	0.765	0.665	0.879	4.33
Schupf, 2008							104	1021	0.994	0.986	1.002	5.23
Xu. 2008				-			113	155	0.848	0.632	1.139	2.72
Fagan, 2009							29	69	0.625	0.344	1.135	1.09
Roher, 2009							17	21	1.202	0.903	1.601	2.79
Sedaghat, 2009							29	16	1.313	1.219	1.415	4.95
Lui. 2010				•			186	724	0.926	0.878	0.977	5.08
Sundelöf, 2010							101	28	1.295	1.091	1.538	3.99
Head. 2011				_			17	12	0.645	0.604	0.689	5.01
Chiu. 2013							30	107	1.841	1.328	2.552	2.45
Chiu, 2013							31	107	1.217	1.175	1.261	5.17
Ruiz, 2013			_				51	53	0.831	0.607	1.136	2.56
Yamamoto, 2013							23	13	1.012	0.531	1.927	0.96
Zhang, 2013			4				153	120	0.865	0.811	0.922	5.02
Bu. 2014							128	135	1.228	1.079	1.399	4.44
Rembach, 2014							125	577	1.013	0.953	1.077	5.04
Wang, 2014							97	122	0.991	0.979	1.003	5.23
Jiao. 2015				— —			156	129	1.387	1.168	1.648	3.98
Kim. 2015				-			100	46	0.865	0.759	0.986	4.43
Janelidze, 2016							57	274	0.673	0.581	0.780	4.25
All Studies				¢			2336	4452	1.031	0.962	1.106	100
p=0.38718	0.2	0.4	0.6	1 2		5						

CONFIDENTIAL

Please email questions to ykarten@c-path.org

89

Ovod – A&D, 2017

Nakamura – Nature, 2018

Please email questions to ykarten@c-path.org

Optimized method for plasma A β by IP-MS/MS

Levels of Aβ42 and Aβ40 in plasma can be measured in 250 uL of plasma with high precision Also Aβ38 and Aβ -3 to 40 (APP 669-711) can be quantified

Plasma $A\beta$ in the Insight46 cohort

Study design: Insight46 - epidemiological study people born 1946 (n= 414 cognitively unimpaired)

APOE genotype, neuropsych testing, amyloid PET

Plasma AB42, AB40/42 using immunoassay (Simoa) and IP LC-MS/MS

→ Plasma Aβ42 and Aβ40/42 ratio by IP-MS/MS show high concordance with brain amyloidosis

Please email questions to ykarten@c-path.org

The Elecsys prototype assay for plasma Aβ40 and Aβ42 – Diagnostic performance for detecting Aβ positivity (determined by CSF)

Palmqvist et al. JAMA Neurol 2019

Plasma p-tau181 as a biomarker for tau pathology in AD

- → Plasma P-tau181 a candidate blood biomarker for AD
- → Good correlation between plasma and CSF levels reflects brain pathophysiology
- → Lack of analytical sensitivity to measure all samples (even in AD patients)

Lilly Research Lab MSD method for plasma P-tau181

Large clinical studies on the Lilly MSD plasma P-tau181 method – UCSF and ARTFL cohorts

- → P-tau181 assay differentiated AD from clinical (AUC 0.89) and autopsy-confirmed (AUC 0.88) FTD
- Plasma P-tau181 identified amyloid PET positive cases regardless of clinical diagnosis and correlated with cortical tau deposition measured by flortaucipir (FTP) PET
- → Plasma P-tau181 may be a useful screening tool for AD-type tau pathology

Large clinical studies on the Lilly MSD plasma P-tau181 method – BioFinder cohort

- → Increased plasma P-tau181 with higher Braak stages
- → High baseline P-tau181 in controls and MCI cases predicts progression to AD dementia
- → Further support for the usefulness of plasma P-tau181 as a biomarker for AD-type tau pathology

Please email questions to ykarten@c-path.org

In house Simoa assay

Karikari et al., Lancet Neurol, 2020

TRIAD 'discovery' cohort Plasma P-tau181 increased in MCI and AD

Please email questions to ykarten@c-path.org

CONFIDENTIAL

Karikari et al., Lancet Neurol, 2020

100

TRIAD validation cohort P-tau181 in in relation to clinical diagnoses

101

TRIAD validation cohort Plasma p-tau181 correlates with MK-6240 tau PET

TRIAD validation cohort

P-tau181 correlates with AZD4694 amyloid PET

Plasma P-tau181 in familial Alzheimer's disease

Please email questions to ykarten@c-path.org

CONFIDENTIAL

O'Connor A et al., Mol Psychiat 2020 104

Plasma P-tau181 in familial Alzheimer's disease

Please email questions to ykarten@c-path.org

Connor A *et al.*, Mol Psychiat 2020 105

Plasma P-tau181 in the 1946 cohort – plasma p-tau181 as a pre-screening tool for amyloid status

Please email questions to ykarten@c-path.org

Keshavan *et al.*, unpublished

Plasma P-tau181 in Down syndrome

• • 100-Plasma pTau (pg/ml) 50-. 60 00 •• . pDS aDS dDS

data plasma pTau levels: by diagnostic categories

Please email questions to ykarten@c-path.org

CONFIDENTIAL

Fortea et al., 2020, unpublished

Plasma P-tau181 – neuropathological validation

Please email questions to ykarten@c-path.org

CONFIDENTIAL

Lantero Rodriguez J et al. Acta Neuropath. 2020 108

JAMA | Original Investigation

Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders

Sebastian Palmqvist, MD, PhD; Shorena Janelidze, PhD; Yakeel T. Quiroz, PhD; Henrik Zetterberg, MD, PhD; Francisco Lopera, MD; Erik Stomrud, MD, PhD; Yi Su, PhD; Yinghua Chen, MSc; Geidy E. Serrano, PhD; Antoine Leuzy, PhD; Niklas Mattsson-Carlgren, MD, PhD; Olof Strandberg, PhD; Ruben Smith, MD, PhD; Andres Villegas, MD; Diego Sepulveda-Falla, MD; Xiyun Chai, MD; Nicholas K. Proctor, BS; Thomas G. Beach, MD, PhD; Kaj Blennow, MD, PhD; Jeffrey L. Dage, PhD; Eric M. Reiman, MD; Oskar Hansson, MD, PhD

Lilly MSD plasma P-tau217 across neurodegenerative diseases

Lilly MSD plasma P-tau217 in Alzheimer's disease – compared with other markers, including P-tau181

JAMA paper (Palmqvist *et al.* 2020) favors P-tau217 over P-tau181 with higher AUCs for the former marker for clinical and biomarker-supported AD diagnoses

Evidence that P-tau217 might be more CNS-specific and more specific to "pathological tau phosphorylation" (Barthélemy NR *et al.*, J Exp Med. 2020)

But plasma P-tau181 may have similar or higher diagnostic performance against neuropathology:

P-tau181 AUC for AD vs. non-AD pathologies: 0.97 (95% CI 0.94-1.00) (Lantero Rodriquez J *et al.*, Acta Neuropathol. 2020)

P-tau217 AUC for AD vs. non-AD pathologies: 0.89 (95% CI 0.81-0.97) (Palmqvist S *et al.*, JAMA 2020)

P-tau217 a little bit harder to measure than P-tau181?

More head-to-head studies needed...

Please email questions to ykarten@c-path.org

NfL - ELISA vs. Simoa

CONFIDENTIAL

LLoD = 0.26 ng/L; LLoQ = 1.95 ng/L

Please email questions to ykarten@c-path.org

CONFIDENTIAL

Weston *et al.*, Neurology 2017 ¹¹⁵

Please email questions to ykarten@c-path.org

Longitudinal plasma NFL in the ADNI study

- All ADNI patients: CU controls (n= 401), MCI (n= 855) and AD dementia (n= 327)
- Baseline + up to 11 year longitudinal data, in total 4326 samples
- In-house Simoa for plasma NFL: Uman antibodies + bovine NFL calibrator Gisslén et al, EBioMed 2016

Please email questions to ykarten@c-path.org

CONFIDENTIAL

Mattsson N, et al. JAMA Neurol 2019

117

CrossMar

Alzheimer's & Dementia 14 (2018) 535-562

2018 National Institute on Aging—Alzheimer's Association (NIA-AA) Research Framework

NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease

Clifford R. Jack, Jr.,^{a,*}, David A. Bennett^b, Kaj Blennow^c, Maria C. Carrillo^d, Billy Dunn^e, Samantha Budd Haeberlein^f, David M. Holtzman^g, William Jagust^h, Frank Jessenⁱ, Jason Karlawish^j, Enchi Liu^k, Jose Luis Molinuevo^l, Thomas Montine^m, Creighton Phelpsⁿ, Katherine P. Rankin^o, Christopher C. Rowe^p, Philip Scheltens^q, Eric Siemers^r, Heather M. Snyder^d, Reisa Sperling^s

Biomarkers for A/T/N

- Amyloid = plasma Aβ42/Aβ40 ratio
- Tau = plasma P-tau
- Neurodegeneration = plasma neurofilament light

Please email questions to ykarten@c-path.org

CONFIDENTIAL

Service Alzheimer's دی

Dementia

Please email questions to ykarten@c-path.org